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A simple approach is presented for an effective description of static deformations of carbon nan-
otubes in terms of bond-stretching and bond-bending modes and for actuation effects related to
these deformations. The approach allows us to analyze various phenomena in a unified way and to
clarify their relationships. We discuss the gap energy modulation by external strains, dimensional
and torsional deformations caused by charge injection, and stretch-induced torsion. We show how
symmetry determines dependence on the chiral angle of nanotubes. Particularly interesting are ac-
tuation responses that are caused by the modulation of electron kinetic energy by the deformations.
Their strong oscillatory dependence on the nanotube geometry is explained within an intuitively
clear bonding pattern picture. It is demonstrated how anisotropic (shear) deformations play an
important role in nanotubes making their responses distinctly different from the graphite’s.

PACS numbers: 61.46.+w, 73.22.-f, 71.38.-k, 85.85.+j

I. INTRODUCTION

Carbon nanotubes are particularly interesting
nanoscopic systems1 whose electronic and mechanical
properties have been the subject of numerous studies
and are attractive for diverse applications2,3. In this
paper we study how microscopic displacements of atoms
on a hexagonal atomic network of nanotubes provide
for specific mechanical and electromechanical couplings
that may be of interest for nanoactuators to convert
between different types of energy. We will be discussing
the deformations of nanotubes resulting from the charge
injection as well as coupling between stretching and
torsional deformations.

Electromechanical actuation using single-wall nan-
otubes (SWNTs) has been demonstrated in electrochem-
ical cells4. Actuator strains of above 1% have been
observed3, which is about 10 times that of ferroelectrics,
indicating the technological opportunity for direct con-
version of electrical energy into mechanical. Currently
available nanotube sheets and long fibers comprise bun-
dles of SWNTs, each bundle containing from 30 to 100
of SWNTs of various internal geometries, or chiral vec-
tors (N,M)1: from zigzag (N, 0) to armchair (N,N)
tubes. In a recent publication5 we studied a simplified
electron-lattice model at low injection levels and showed
that SWNTs exhibit quite a unique picture of electrome-
chanical actuation that strongly depends on (N,M) and
the magnitude of the response of individual tubes, par-
tucularly of semiconducting zigzags, can be appreciably
larger than that of graphite. Here we extend that study
on the basis of a more complete picture of elastic interac-
tions and to include the torsional deformations. We also
provide a simple bonding picture to explain the peculiar
behavior of nanotube responses.

Stretch-induced torsion of SWNTs has been found
in molecular dynamics simulations.6 Here we present a

theory of this effect showing that it is caused by the
curvature-derived elastic anisotropy and that the max-
imum effect is expected for the chiral tubes in the middle
between armchair and zigzag tubes. Although demon-
strating an opportunity for converting tensile strain into
torsion, the magnitude of the effect in carbon nanotubes
may be small. We indicate that other nanotubes with
inherent elastic anisotropy, such as BC2N tubes7, could
provide a substantial advantage.
Our focus will be on a simple unified description of

and relationships between various effects. The approach
consists of finding the static lattice distortion patterns D

that minimize the total adiabatic energy of the system
per carbon atom:

E(D) = U(D) + Eel(D), (1)

where U is the lattice elastic potential energy, including
energies of all valence electrons of the undoped system,
and Eel the energy of extra charges if δn electrons per
atom have been added.
We find it convenient to discuss static distortions of

nanotubes in terms of effective 2-d displacements of
atoms of a parent graphene sheet out of which nanotubes
are rolled.1 Both bond-stretching and bond-bending dis-
placements of the hexagonal atomic lattice are consid-
ered that can form isotropic and anisotropic distortion
modes. The latter modes turn out to be intimately re-
lated to many interesting effects specific to nanotubes.
Appropriate empirical expressions for U will be built that
are based entirely on the symmetry requirements in the
spirit of the continuum mechanics, and connections be es-
tablished between the microscopic displacements picture
and the macroscopically observable distortions (section
II). For Eel we use a tight-binding model of π-electron
bands1 whose parameters can be affected by the lattice
distortions (section III). When a strain is applied to the
undoped system, the deformation D occurs so as to min-
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imize U and this results in modulation of some electronic
parameters, such as the gap energy8 (section IV), and,
possibly, in a strain “along another direction” (section
VI). Conversely, if charges are added to the system, the
lattice will try to accommodate them with the deforma-
tion D that minimizes E (section V). For illustrative
purposes, some parameterization will be used to carry
out numerical calculations.

II. MACRO- AND MICROSCOPIC 2-d
DISTORTIONS

Elastic in-plane deformations of the graphene sheet
provide a natural basis for the effective 2-d description of
nanotube deformations. An arbitrary 2-d crystal struc-
ture may have many atoms in the unit cell (graphene
has 2 atoms) and, correspondingly, many deformation
degrees of freedom. From the standpoint of macroscopic
distortions, however, “internal” degrees of freedom are
disguised and the only static observable is the deforma-
tion of the unit cell as a whole or, alternatively, of the
triangle built of the primitive lattice vectors and assumed
periodically repeated. To specify the 2-d deformation of
the triangle, one needs 3 parameters, precisely as many
as is needed to specify the in-plane deformations of a 2-d
elastic continuum. Let us choose a convenient 2-d system
of coordinates with axes x and y (axes in Fig. 1 are re-
lated to the underlying hexagon structure). With overall
translation and rotation excluded, a general linear defor-
mation (displacement (δx, δy) of the point (x, y)) of the
elastic continuum can be described as

(

δx
δy

)

=

(

γ0 + γx ηx
ηx γ0 − γx

)(

x
y

)

. (2)

Parameter γ0 here corresponds to isotropic distortions,
while γx and ηx correspond to anisotropic distortions and
are components of the pure shear strain tensor.
In nanotubes, there would also be another natural sys-

tem of coordinates related to the nanotube axis (in Fig. 1
x−aixs is at angle φ > 0 to the nanotube axis). With
the coordinates rotated as

(

x1

y1

)

=

(

cosφ − sinφ
sinφ cosφ

)(

x
y

)

, (3)

γ0 remains invariant while shear components are known
to transform as

(

γ
η

)

=

(

cos 2φ − sin 2φ
sin 2φ cos 2φ

)(

γx
ηx

)

.

Macroscopic deformations of the tube as a whole are de-
fined and measured with respect to the tube axis. The
three parameters (γ0, γ, η) translate into the observable
longitudinal dimensional change δL/L = γ‖ = γ0 + γ,
transversal change δR/R = γ⊥ = γ0 − γ, and the tor-
sional deformation δφl = η/πR (the latter is in turns per
unit length, R being the tube radius).

FIG. 1: Four carbon atoms of the repeating motive are de-
picted with the three types of bonds da, db, and dc. In each
of the four panels schematically shown are the carbon atom
displacements corresponding to the defined anisotropic distor-
tion modes. The nanotube axis is at the angle φ with x−axis.

For a full description of the 2-d deformation of the
graphene unit cell with two atoms, one however needs 5
parameters. We consider the deformations in terms of ra-
dial (bond-stretching: δa, δb, δc for, respectively, bonds
da, db, dc) and tangential (bond-bending: ra, rb, rc)
displacements of carbon atoms, as should be clear from
Fig.1. Let us express those displacements as linear
combinations of the corresponding isotropic (S, Q) and
anisotropic (A1, A2) and (B1, B2) distortion modes, e.g.:

δa = S/3−A1/2
√
3−A2/2,

δb = S/3 +A1/
√
3, (4)

δc = S/3−A1/2
√
3 +A2/2,

for radial displacements and similarly for ra, rb, rc
through Q, B1, B2. It is clear, however, that the Q
mode is not a deformation mode, it describes the over-
all rotation of the triangle irrelevant for our purposes
and will be set Q = 0 in agreement with the definition
(2). The 5 modes left can be used as convenient neces-
sary 5 parameters. The isotropic mode S describes the
overall size change of the triangle. The anisotropic dis-
tortions Ai and Bi result in triangle shape modifications
as shown in Fig.1. It is also useful to introduce the ro-
tated anisotropic deformation modes (A‖, A⊥) and (B‖,
B⊥) defined with respect to the nanotube axis, they re-
spectively relate to (A1, A2) and (B1, B2) as (x1, y1) to
(x, y) in Eq.(3).
From Fig. 1 and from the corresponding definitions,
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one can obtain the following compact expressions for the
macroscopic deformations:

d · γ0 = S/3,

d · γ = (B −A)/2
√
3,

d · η = (C −D)/2
√
3,

(5)

where

A = A‖ cos 3φ+A⊥ sin 3φ,
B = B‖ sin 3φ−B⊥ cos 3φ,
C = −A‖ sin 3φ+A⊥ cos 3φ,
D = B‖ cos 3φ+B⊥ sin 3φ.

(6)

The length unit d above stands for the undeformed near-
est neighbor carbon-carbon bond length, another length
unit to be used is the second order carbon-carbon dis-
tance a = d

√
3. Notice that macroscopic results (5,6) are

invariant with respect to rotation φ → φ + 2π/3 as one
should expect from the symmetry of the hexagon struc-
ture.
The elastic energy of the the in-plane deformations of

the graphene sheet is invariant with respect to the ro-
tation of the 2-d system of coordinates. Using all ro-
tationally invariant combinations of the introduced de-
formation modes, the harmonic deformation energy per
carbon atom can in general be written down as

U0 =
KS

2
S2 +

KA

2
(A2
‖ +A2

⊥)

+
KB

2
(B2
‖ +B2

⊥) +KAB(A‖B⊥ −A⊥B‖). (7)

It is up to ab initio and/or empirical models to establish
numerical values of the elastic constants. In this paper,
we will be using some estimates for illustrative purposes.
For instance, a good representation of the elastic proper-
ties of graphene is believed to be achieved within an em-
pirical force constant model including terms up to four
near neighbor levels as described and referenced in Ref. 1.
Using that model, one can express the elastic constants

in (7) through the force constants φ
(j)
i , e.g.:

KS = φ(1)
r /6 + φ(2)

r + 2φ(3)
r /3 + 7φ(4)

r /3

for the S mode and so on. Then, using numerical values
of the force constants quoted on p.169 of Ref. 1, one
would arrive at the following magnitudes of the elastic
constants (in eV/Å2):

KS = 7.74, KA = 4.56, KB = 7.14, KAB = 1.21. (8)

With these numbers, Ai modes turn out to be softer than
Bi modes, and the coupling between Ai and Bj modes is
relatively weak. It is useful to compare relative strengths
in (8) to the nearest neighbor elastic spring model used
in Ref. 5 where KS = K/6 and KA = K/4: evidently (8)
yields relatively softer Ai modes as we indeed expected.
For a given macroscopic distortion (γ0, γ, η) of the un-

doped sheet, the microscopic distortion modes adjust so

as to minimize the microscopic energy (7). The result-
ing rotationally invariant macroscopic deformation en-
ergy per carbon is

U0
m =

C0

2
γ2
0 +

Csh

2
(γ2 + η2), (9)

where the effective elastic energies C0 = 9d2KS and
Csh = 12d2Zab/zab.

19 When going from (7) to (9), one
can also answer an interesting question as to when dis-
placements of all atoms in the unit cell of graphene
are such as if they were on a 2-d continuum. For this
to happen, the optimal distortion modes should sat-
isfy A‖ = B⊥, A⊥ = −B‖, requiring KA = KB .

With numbers (8) and d = 1.42Å, the elastic energies
C0 = 140.5 eV, Csh = 81.1 eV. The effective 2-d Pois-
son ratio ν = (C0 − Csh)/(C0 + Csh) turns out to be
0.27, close to the earlier reported9 value within the same
force constant model, and the in-plane stiffness per car-
bon C = C0Csh/(C0 + Csh) = 51.4 eV.

When the graphene sheet is wrapped to form a
carbon nanotube, the effective 2-d elastic description
would undergo certain changes. From the results of
ab initio calculations10,11, it is known that even in the
ground state of nanotubes the equilibrium bond lengths
da, db, dc can differ from each other and are different
from the graphene bond length d. These effects can eas-
ily be absorbed in our description by thinking that the
ground states of nanotubes are somewhat deformed (with
respect to graphene). It should be understood that the
deformation is in general anisotropic (the rotational in-
variance is lifted since a new selected direction would
now exist – the nanotube axis). Using general symme-
try considerations20, one can show that the deformation
of the ground state can be described by 3 R-dependent
distortion parameters (SR, AR, BR) so that

A‖ = AR cos 3φ, A⊥ = AR sin 3φ,
B‖ = BR sin 3φ, B⊥ = −BR cos 3φ.

(10)

Note that (10) is required by the symmetry. That is,
extraction of the functions (SR, AR, BR) from ab initio
data10,11 for, say, armchair nanotubes would be sufficient
to describe the deformed ground states for the tubes of
arbitrary chirality. In this paper we do not pursue these
numerical fits to the ab initio data.

When using the expression (7) for the elastic energy,
we now understand that the deformation modes S,A‖, . . .
used there are calculated relative to their values in the
corresponding ground states. In addition to this how-
ever, in nanotubes of a finite radius R, the curvature
also modifies the very elastic couplings. First, the elastic
constants K in (7) can be renormalized with corrections
∝ 1/R2+ . . . That is, all coefficients in (7,9) and quanti-
ties derived from them are in general R-dependent. Sec-
ond, the rotational invariance of the elastic energy is also
lifted. Using the same symmetry considerations20, one
can show that this axial symmetry breaking in the har-
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FIG. 2: NNH and SOH integrals, whose modulation is con-
sidered.

monic approximation will occur in the form U = U 0+δU ,

δU = Ka
SASA+Ka

SBSB +
Ka

A

2
(A2
‖ −A2

⊥)

+
Ka

B

2
(B2
‖ −B2

⊥) +Ka
AB(A‖B⊥ +A⊥B‖), (11)

where definitions (6) have been used and anisotropy pa-
rameters Ka ∝ 1/R2+ . . . For description of some of the
effects, the isotropic deformation energy (7) is already
sufficient, but for other, the elastic anisotropy expressed
in Eq. (11) is essential, we resort a discussion to section
VI.

III. SINGLE ELECTRON SPECTRUM

We consider the electron kinetic energy to arise both
from nearest neighbor (NNH) and second order (SOH)
hopping between carbon atoms as depicted in Fig.2. The
hopping integrals are modulated by the lattice distor-
tions providing thus the electron-lattice interaction. (An
additional effect would e.g. follow from the modulation
of Coulomb repulsion between extra charges.) As is cus-
tomary, a linear modulation with distances is assumed.
So NNH integrals are modulated as

ta = t0 − αδa, tb = t0 − αδb, tc = t0 − αδc, (12)

where t0 is the NNH integral on the undistorted lattice
and α the NNH coupling constant. Similarly, SSH inte-
grals t1, t2, and t3 are modulated with the SOH distances,
the modulation strength given by the SOH coupling con-
stant β. We expect β/α ∼ 0.1. Expressing changes of
distances in terms of introduced distortion modes (4) will
yield the corresponding coupling constants for each of the
modes as used below. With SOH included, the charge
conjugation symmetry (CCS) of the half-filled system is
broken and the band energies have the form

ε±(~k) = τ(~k)± ξ(~k) (13)

for the conduction and valence bands, respectively, where

ξ(~k) originates from the NNH and τ(~k) from the SOH,

and ~k = (kx, ky) is the 2-d dimensional wavevector. With
the definitions of Fig.2,

τ(~k) = −2t1 cos kxa− 2t2 cos k−a
− 2t3 cos k+a, (14)

ξ2(~k) = t2a + t2b + t2c + 2tatc cos kxa+ 2tatb cos k−a

+ 2tbtc cos k+a, (15)

where k± = (kx±
√
3ky)/2. For not too small nanotubes

the low excitation energy region is always close to the
special, “Dirac”, points in the momentum space, where
the gap between the valence and conduction states of the
(isotropic) graphene spectrum (as determined by (15))
vanishes. Then one can use expansions of the exact band
energies (14, 15) in momenta around the special points
and in (small) deviations of hopping integrals around
their bare values. For certainty, we choose the special

point ~K = (4π/3a, 0) and from now on, all momenta
~k = (kx, ky) will be measured with respect to that spe-
cial point (kx → 4π/3a + kx). After some exercise, one
reduces (14, 15) to

τ(~k)/t0 = τ0(~k)/t0 +
√
3(β/α)

(

Ŝ

+ 3[kx(Â1 + B̂2) + ky(Â2 − B̂1)]a/4
)

, (16)

ξ2(~k)/t20 = (3 + 2Ŝ − 2
√
3Â1)(kxa− Â1)

2/4

+ (3 + 2Ŝ + 2
√
3Â1)(kya− Â2)

2/4

+
√
3Â2(kxa− Â1)(kya− Â2). (17)

Here τ0 is the equilibrium value of τ and we introduced
dimensionless variables Ŝ = −αS/t0, Â1 = −αA1/t0,

Â2 = −αA2/t0, B̂1 = −αB1/t0 B̂2 = −αB2/t0 to save
space in formulae (the same would be used for rotated
modes A‖, A⊥. Applicability of the expansions (16,17)
requires kxa¿ 1 and kya¿ 1 as well as relatively small
distortion amplitudes. In view of this and of the small-
ness of β/α, one can safely neglect the terms in (16) that
are proportional to ka¿ 1.
For the (N,M) tube, the chiral angle φ (Figs. 1, 2) is

defined through sinφ = (N −M)/2Ch, where the dimen-

sionless tube circumference Ch =
(

N2 +M2 +NM
)1/2

(it is related to the tube radius as 2πR = aCh). We
consider φ belonging to the interval between 0 (armchair
tubes) and π/6 (zig-zag tubes). The angle φ is com-
plementary to the chiral angle θ as defined in Ref. 1:
φ = π/6− θ. Of extreme importance is the divisibility of
N −M by 3, the “remainder” q = 0, ±1 is introduced
by

N −M = 3m+ q, (18)

where m is the appropriate integer. The electron mo-
menta can lie only on a set of quantization lines, the one
most closely approaching the special point is described
by

kx sinφ+ ky cosφ = −2πq/3Cha = K0/a. (19)
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According to (17), the lowest ξ−energy in the equilib-
rium system is ξ0 = t0

(

3K2
0/4

)1/2
= |q|t0d/2R, finite for

semiconducting nanotubes (|q| = 1) and zero for metallic
ones (q = 0).
One-dimensional (momentum k) “ξ−bands” along the

quantization lines are obtained from (17) and have the
familiar Dirac form

ξ2(k) = ∆2 + v2
‖k

2, (20)

where the gap parameter

∆ = v⊥|K0 − Â⊥|/a (21)

and the effective Fermi velocities

v‖ = vF − at0Â/2, v⊥ = vF + at0Â/2. (22)

Here vF /at0 =
√
3/2 + Ŝ/2

√
3 and dimensionless Â is

defined through dimensionless Â‖, Â⊥ as in (6). Higher
lying energy bands are evidently also described by (21)
where q used in the definition of K0 would be “displaced”
by 3m where m is an integer. If, e.g., the lowest energy
band corresponds to q = −1, the first higher lying band
would be with q = 2, still the next with q = −4 and so
on.
The curvature affects the effective 2-d description of

the electron spectrum of nanotubes. As we discussed in
section II, even in the ground states, nanotubes are de-
formed with respect to graphene. In our applications,
it means that all distortion modes in Eqs. (16,17) and
further on would have to be displaced like S → SR + S,
A‖ → AR cos 3φ + A‖, etc. In addition, the curvature
changes the overlap of π-orbitals which can be repre-
sented as another source of the effective external dis-
tortion AR → AR + Ae, SR → SR + Se, Se =

√
3Ae,

so that bonds along the tube axis do not change while
the other bonds change their length appropriately. An
elegant analysis of the modulation of the NNH by curva-
ture was, e.g., given by Kane and Mele,12 from their work
we deduce the value Ae = t0π

2/4
√
3αC2

h. In our calcu-
lations below, we will be taking into account only the
anisotropy term Ae as responsible for curvature-derived
gaps in quasi-metallic tubes.

IV. MODULATION OF THE GAP BY

DEFORMATIONS

Modulation of the gap energy Eg = 2∆ by the lon-
gitudinal γ‖ and torsional η strain is the effect whose
extensive analysis was given in Ref. 8 where references
to the earlier work can also be found. Here we discuss it
within our framework indicating the differences with the
treatment of Ref. 8 as well as giving a simple physical
picture for the peculiar features of the effect.
Eq. (21) shows how the gap parameter ∆ is modulated

by the bond-stretching modes S,A‖, A⊥. When strains

Tube da db dc ∆/t0

(10,0) -1.0 0.588 0.588 0.176

(11,0) 1.0 -0.415 -0.415 0.169

(10,5) 0.954 -0.1 -0.715 0.139

(10,6) -0.916 0.227 0.818 0.128

TABLE I: The bonding patterns for four tubes. The contri-
butions from bonds da, db and dc are normalized so that their
sum gives the gap parameter in units of t0.

γ‖ and/or η are applied, they cause the lattice distor-
tions so as to minimize the elastic energy (7): in general
both bond-stretching and bond-bending modes are ex-
cited but the latter do not affect the gap. The isotropic
displacements are simply determined by S = 3γ0d, while
anisotropic are related to the shear strain components:

A‖ = −
√
3za(γ cos 3φ+ η sin 3φ)d,

A⊥ = −
√
3za(γ sin 3φ− η cos 3φ)d.

(23)

Using equilibrium γ0 = (1− ν)γ‖/2 and γ = (1+ ν)γ‖/2,
it is now straightforward to find the gap modulation δEg

of semiconducting tubes (q = ±1) at small strains:

δEg

αd
=

π(ν − 1 + (1 + ν)za)√
3Ch

γ‖ (24a)

+ 3qza
[

(1 + ν)γ‖ sin 3φ− 2η cos 3φ
]

/2. (24b)

Apart from the difference in notation, (24b) agrees with
the result of Ref. 8 on the chiral dependence of the major
modulation effect. Noteworthy is the appearance of the
factor za in (23,24), which would be 1.28 with numbers
(8). Analytical calculations of Ref. 8 assume the lattice
to deform under the strain as if it was a 2-d elastic contin-
uum. The factor za accounts for the difference caused by
the actual elastic properties of the lattice, this factor be-
comes unity19 when the difference effectively disappears.
In the extreme case of KB = KAB = 0, the factor za
becomes 0, and the largest part of the gap modulation
(24b) disappears because the shear deformation would be
realized only through the bond-bending modes. In the
opposite extreme case of KB = ∞, all the shear occurs
through bond-stretching modes and the factor za = 2.
Ref. 8 provides numerical results on modulation for a
specific choice of the coupling constant α. Eq. (24a) re-
flects a correction ∝ 1/R coming from the modulation of
the Fermi velocity in (21).
The notable feature of Eq. (24b) is the factor q which

leads to responses of the semiconducting tubes oscillating
as a function of N −M . Consider, e.g., zigzag tubes that
have the strongest response to the longitudinal strain.
The longitudinal expansion of the (10, 0) tube with q = 1
results in the gap increase while the expansion of the (11,
0) tube with q = −1 in the gap decrease. We find that a
very transparent physical picture can be offered to under-
stand this fascinating behavior. Let us calculate the con-
tributions to the gap energy of the semiconducting tubes



6

coming from different types of nearest neighbor carbon-
carbon bonds, i.e., the matrix elements of the correspond-
ing parts of the Hamiltonian at the conduction band min-
imum wave vectors (kxa = K0 sinφ, kya = K0 cosφ, see
(19)). The problem is equivalent to finding the phase
factors for three vectors representing the three types
of bonds that maximize the conduction-valence band
splitting. One readily derives that the bonds di con-
tribute − cos(ϕ + φi) to ∆/t0 , where ϕ = −qπ/2 − φ,

φa = 2π/3+K0 sin(φ−π/6)/
√
3, φb = K0 cosφ/

√
3, and

φc = −2π/3−K0 sin(φ+ π/6)/
√
3. Table I gives numer-

ical examples of the bond contributions for four tubes.
We will call “bonding” those bonds whose contribution is
negative and “antibonding” those whose contribution is
positive. By definition, expansion of the bonding bonds
increases the gap, and their contraction decreases the
gap; effects for the antibonding bonds are opposite. Ta-
ble I illustrates a dramatic difference of the bonding pat-
terns of tubes with q = 1 and q = −1. And, indeed, the
bond da along the tube axis of the zigzag tubes turns
out to be bonding for the (10, 0) tube but antibonding
for the (11, 0) tube, leading to effects in agreement with
(24b). By the same token, it is clear that a twist of a
certain direction would result in opposite effects on the
gap for tubes (10, 5) and (10, 6).
For quasi-metallic tubes (q = 0), the gap modulation is

given by δEg =
√
3αs0A⊥, where s0 = sign(Ae sin 3φ +

A⊥) with A⊥ from (23) and γ = (1 + ν)γ‖/2. In the
absence of the curvature-induced gap (Ae sin 3φ = 0), of
course, strains could only produce a finite gap. With the
curvature-derived gap in place, there would be a range of
relatively small strains where the gap can be decreased.
We note that a small longitudinal expansion γ‖ > 0 par-
ticularly leads to such an effect. It is intuitively clear:
the curvature makes hopping integrals “perpendicular”
to the tube axis smaller than those “parallel” to the axis.
The curvature-derived gap would be decreased if all the
hopping integrals become more equilibrated, and for this
one needs a longitudinal expansion and/or transversal
contraction.

V. CHARGE-INDUCED DISTORTIONS

Suppose one adds δn extra electrons (δn < 0 for holes)
per carbon atom to a SWNT. How would interatomic
distances be affected? Here we study the contribution
to bond length changes arising from the modulation of
electron hopping integrals t by lattice distortions. The
basic illustration is very simple: if an extra electron or
hole is added to a half-filled two-site system, this would
cause an expansion of the inter-site bond by δd = α/K,
where K is the elastic constant and the hopping integral
is modulated as δt = −αδd. We will show that this
relaxation mechanism can produce surprisingly different
results for carbon nanotubes having different values of N
and M .
To evaluate the lattice deformation to accommodate

additional charges on the nanotube, we need to know the
energy Eel of extra charges as a function of the distor-
tion coordinates. It is well known that one-dimensional
electron-phonon systems can be unstable with respect
to the Peierls distortion and exhibit formation of non-
uniform polaronic distortions. For not very small car-
bon nanotubes, however, these effects seem practically
irrelevant. The estimated transition temperatures (e.g.
Ref. 13) and polaron binding energies13,14 are on the or-
der of 1K or smaller. So even quite low temperatures
in excess of those estimates are sufficient to prevent non-
uniform charge distributions. Of course, quantum fluctu-
ations also act to render polaronic states unstable. With
a uniform distribution of excess charges over the lattice
sites and relatively low temperatures, it will be safe to
assume that electrons/holes added to the system are ac-
commodated in the band states of the lowest available
excitation energies. The lattice displacements affect Eel

through the variation of the band parameters as was dis-
cussed in section III.
With only one (with account of degeneracy) electronic

band being filled, the variable part of the electronic en-
ergy per carbon takes the form

Eel =
√
3(β/α)Sδn+ (1/f)

∫ δk

0

ξ(k)dk, (25)

where only one practically non-negligible term from (16)
is left. The coefficient f relates the boundary δk of the
occupied states in the momentum space to the charge
injection level: δk = f |δn|, f = πCh/a

√
3.

The lattice energy is given by (7), and the resulting
distortion pattern is obtained by minimization of the to-
tal energy (1). Eq. (25) is independent of Bi distortion
modes which then acquire a finite value only through the
elastic coupling to Ai modes in (7). Substituting those
derived values in (7) then leads to the effective lattice
potential energy in terms of S and Ai modes only:

U = KSS
2/2 +K ′A(A

2
‖ +A2

⊥)/2 (26)

where K ′A = KA − K2
AB/KB . With parameters (8),

K ′A = 4.35 eV/Å2. The dimensional changes (5) then
would be

d · γ = −uA/2
√
3, d · η = uC/2

√
3 (27)

where the correction factor u = 1 −KAB/KB = 0.83 if
(8) is used.
As an instructive example, we first analyze the effects

linear in δn. Then the second term in (25) reduces to
∆|δn|. Let us neglect all the curvature effects for this
illustration. Minimization of the total energy is trivial
and yields the optimal distortion pattern

KSS

|δn| = ±
√
3β +

πα|q|
3
√
3Ch

(28a)

K ′AA‖

|δn| =
πα|q|
3Ch

cos 3φ (28b)

K ′AA⊥
|δn| =

πα|q|
3Ch

sin 3φ+
√
3αq/2. (28c)
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FIG. 3: Deformations of nanotubes for the electron doping
level δn = 0.5%. Shown are results for 4 “families” of carbon
nanotubes: with N = 11 (crosses), 12 (diamonds), 13 (tri-
angles), and 14 (squares). Connected with broken lines are
the square data points. The upper panel shows changes in
the nanotube length, the middle shows changes in nanotube
radius and the lower panel torsional shear.

This corresponds to the following macroscopic distor-
tions:

γ0 =
1√
3KSd

(

±β + πα|q|
9Ch

)

|δn|, (29a)

γ = − uα

4K ′Ad

(

π|q|
6
√
3Ch

+ q sin 3φ

)

|δn|, (29b)

η =
uα

4K ′Ad
q cos 3φ |δn|, (29c)

upper/lower signs in (28,29) stand for electron/hole dop-
ing.
Of course, the most interesting are the proportional

to q terms in (29b,29c) that lead to responses oscillat-
ing as a function of N −M . For semiconducting tubes,
these terms are dominating, and they establish a large
scale anisotropy of the axial (γ‖ = γ0 + γ) and radial

(γ⊥ = γ0 − γ) responses. The electron-hole symmetric
effect here is inverse to the gap modulation effect dis-
cussed in the previous section: extra charges at the band
extremum want to decrease their energy by decreasing
the gap. The bonding picture illustrated in Table I helps
understand the peculiar oscillations and anisotropy. So
for the (10,0) tube (q = 1, 3φ = π/2) the bonds along the
tube axis are bonding, they therefore shrink upon charge
injection. The bonds “perpendicular” to the tube axis
are antibonding and they would expand. This picture
reverses for the tube (11,0) with q = −1, in full agree-
ment with (29b). We note that these peculiar effects in
(29b,29c) result exclusively from the excitation of the A⊥
mode (28c) that directly modulates the gap (21).
Figure 3 displays equilibrium deformations of a series

of nanotubes for the electron doping level δn = 0.5%
calculated through a numerical optimization of the total
energy. The figure shows not only the linear effects (29)
but also the interplay of effects coming from the curva-
ture and from the filling of the electron states above the
band edge. Appearance of a small gap ∝ Ae drastically
changes the responses of quasimetallic nanotubes for very
low doping levels. However, the role of a small gap
quickly diminishes upon increase of the doping level. For
calculations, in addition to the elastic constants (8), we
used electronic parameters: α = 5 eV/Å and β/α = 0.2.
The results are practically independent of the value of t0.
The salient qualitative features: an oscillating character
of the responses as a function of the nanotube geometry
and a large scale anisotropy of the dimensional changes,
are clearly seen.
Further increase of the injection level leads to charges

starting to fill in the higher lying energy bands.
The lowest critical densities are found as δnmet =
2
√
3/C2

h, δnsem = 2/C
2
h. This yields, e.g., δnmet ' 1.2%

for the (10, 10) nanotube, and δnsem ' 1.7% for the (11,
0) nanotube. Onset of the filling in the next higher lying
bands leads to sudden changes in the responses – obvi-
ously, a distortion A⊥ that decreases the gap (21) for the
first band (say, with q = 1) would increase the gap for
the second band (with q = −2). “Conflict of interests”
of different bands is studied with the single band integral

in Eq.(25) replaced with
∑

i

∫ δki

0
ξi(k)dk over multiple

bands i with appropriate boundaries δki. In Figure 4 we
show calculated γ‖ for a series of carbon nanotubes as a
function of the injection level. Sharp changes in the re-
sponses are clearly seen for the tubes (16, 0) and (17, 0),
whose critical densities are within the displayed injection
range.
Within the same model, the dimensional response of

graphite would be a smooth curve21

γ0 =
1√
3KSd

[

βδn+ α
2

π

(

π|δn|
3
√
3

)3/2
]

, (30)

while γ = η = 0. In graphite, it is only the isotropic
mode that gets excited upon charge injection leading to
the isotropic expansion/contraction of the lattice. The
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FIG. 4: Longitudinal dimensional changes for a series of
doped nanotubes as a function of the injection level. Posi-
tive δn correspond to electron doping and negative to hole.
Crosses are for the (10, 0) zig-zag tube, diamonds for the (11,
0) tube, triangles for the (16, 0) tube, squares for the (17,
0) tube, and x’s for the (10, 10) armchair tube. Lines just
connect the calculated data points. The dashed line shows
the result (30) for graphite.

second order effect ∝ β in (30) provides for CCS break-
ing between electron and hole doping, and is the same
as in the nanotubes independently of their geometry
(29a). This term is important to account for electron-
hole doping asymmetry of graphite intercalation com-
pounds, as has been suggested in earlier work11,15,16.
Experiments on electrochemical actuators with carbon
nanotubes4 also indicated an asymmetric response. Be-
ing linear in the doping concentration δn, this term can
be dominating for graphite and quasimetallic tubes with
q = 0 (at least for the armchair tubes). Strong electron-
hole asymmetry of the graphite and armchair nanotube
responses caused by the modulation of SOH is clearly
seen in Figure 4.
On the other hand, the electron-hole symmetric

NNH modulation (modulation of the Fermi velocity) in
graphite results in the second term in (30) ∝ α. Similar
isotropic parts are also present in the nanotube responses
(see e.g. the second term in (29a)). They however have
different functional dependence on δn. It is interesting to
see how those parts converge to ∝ |δn|3/2 behavior of the
graphite with increasing doping and/or with increasing
nanotube size. Figure 5 illustrates this convergence as
relative deviations of the corresponding parts of the re-
sponses. In fact, there are two universal behaviors there:
one for metallic tubes and one for semiconducting, the
curves within each class transform into each other with
δn scaling as C−2

h , where Ch is the tube circumference.
Of course, much larger deviations from the graphite

behavior can occur due to anisotropic modes. These
take place even for metallic tubes but, for semiconduct-
ing tubes at low doping levels, the electron-hole symmet-
ric NNH gap modulation is especially significant lead-
ing to dimensional responses that can be substantially

FIG. 5: Relative deviations of the isotropic NNH part of nan-
otube responses (γNT) from that of graphite (γGR) as a func-
tion of the charge injection level. Shown are results: with the
solid line for the (10, 10) tube, dashed for the (11, 0) tube,
dash-dotted for the (15, 15) tube, and dash-dot-dotted for the
(17, 0) tube.

larger than graphite’s. The nanotube strains caused by
charge injection may generally be thought of as “fluctuat-
ing around” the graphite response, exhibiting the sharp
transitions described above. The amplitude of the fluc-
tuations and the spacing between them decrease with the
size of the nanotubes, gradually approaching the graphite
response as N,M → ∞. With the increasing injection
level, relative deviations from the graphite curve also be-
come smaller.
It is the quantization of electronic states in nanotubes

that makes anisotropic distortion modes a prominent fea-
ture of the accommodating lattice relaxation. Excitation
of the anisotropic distortion modes causes the macro-
scopic shear deformations. The anisotropy of the longitu-
dinal and transversal responses of nanotubes is one con-
sequence, the other is the torsional deformations. At very
low injection levels, the behavior of the latter is shown
in Eq. (29c), numerical results for higher doping levels
in Figures 3 and 6. As we discussed, onset of filling in
higher energy bands causes sudden changes in responses,
clearly seen in Figure 6 for twisting deformations.
For numerical calculations in this paper, we chose to

increase parameter β/α because of the increased stiff-
ness KS , as compared to parameters used in Ref. 5, and
in order to keep the results for graphite closer to exper-
imental data (see, e.g., a compilation in Ref. 11). Of
course, numerically results are affected by the choice of
parameters, however the salient qualitative features dis-
tinguishing the behavior of nanotubes from graphite are
quite robust. We hope that a more accurate parameteri-
zation of the model can be achieved by fitting to results
of ab initio calculations such as in Ref. 11 and to exper-
imental data, which is not attempted here.
The behavior discussed above arises at low temper-

atures in the single-electron picture. Thermal excita-
tion of charges into higher lying energy bands will likely
be bringing nanotube responses closer to the graphite’s.
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FIG. 6: Torsional shear deformations for a series of electron
doped chiral semiconducting nanotubes as a function of the
injection level. Crosses are for the (10, 5) tube, diamonds for
the (10, 9) tube, triangles for the (12, 7) tube, squares for
the (13, 6) tube, and x’s for the (14, 6) tube. Lines here just
connect the calculated data points.

However, since the separation between energy bands is
large compared with the room temperature thermal en-
ergies for not too large tubes, we expect the thermal
corrections to be small in such cases. Also, superim-
posed on the discussed effects can be a uniform expan-
sion ∝ δn2 coming from the Coulomb repulsion of ex-
tra charges, whose magnitude depends on the positioning
of counterions and dielectric properties of the medium.
Coulombic intra-tube repulsion may dominate actuation
when charge injected is large. This repulsion will how-
ever be absent in the system where extra electrons and
holes are introduced as a result of photoexcitation and
then quickly relax to the band edges and spend some
time there. Evaluation of the e − e correlation effects
would require further studies, such effects may turn out
unimportant for semiconducting nanotubes.

VI. STRETCH-INDUCED TORSION

In this section we deal with purely mechanical coupling
– conversion of the tensile strain into torsion6, the effect
very familiar for ordinary helical springs. In our effec-
tive 2-d treatment, the tensile longitudinal deformation
is described by the strain γ‖ and the torsion δφl = η/πR
by the η component of the shear tensor. The problem of
the stretch-induced torsion can then be posed as finding
the equilibrium η for a given γ‖. It is quite clear that
in an isotropic system with rotationally invariant elas-
tic energy (9), the resulting optimal deformation for a
given γ‖ would have η = 0 and the stretch-induced tor-
sion would not occur in the corresponding tube. The
effective 2-d system has to be anisotropic for the op-
timal η not to vanish. Also, the system has to have
lifted the reflection symmetry around the nanotube axis:
Um(γ0, γ, η) 6= Um(γ0, γ,−η), we can relate this to chi-
rality of the system. Nanotubes readily give examples of

such systems.
Two main questions to be clarified are: 1) How does

η depend on the tube radius R? – General scaling ar-
guments for not too small tubes with short-range elas-
tic interactions require η to be an even function of 1/R:
η = η0+ η2/R

2+ η4/R
4+ . . .; η0 here reflects the magni-

tude of the bare elastic anisotropy of the unwrapped sheet
and equals to zero when the latter is elastically isotropic,
while η2, η4, . . . are curvature derived effects.

22 Corre-
spondingly, the large−R scaling for the systems with bare
anisotropy (like type-II BC2N tubes

7) is δφl ∝ 1/R and
for the systems with curvature-derived anisotropy (like
carbon nanotubes) is δφl ∝ 1/R3.23 2) How does η de-
pend on the relative orientation of the tube axis, or on
the chiral angle φ? – This dependence relates to the
symmetry properties of the unwrapped sheet and/or to
the symmetry breaking introduced by the wrapping.
Let us study the latter for carbon nanotubes. One

can use the optimized microscopic distortions for a given
macroscopic deformation (γ0, γ, η) to derive the following
macroscopic elastic anisotropy per carbon from (11):

δUm = Ca
0 γ0γ +

Ca
sh

2

[

(γ2 − η2) cos 6φ+ 2γη sin 6φ
]

.

(31)
The functional form (31) is required by the symmetry
of the axial anisotropy on a hexagonal background and
can be also obtained directly using the same symme-
try considerations.20 Note that five anisotropy param-
eters of (11) have been reduced to only two. For small
anisotropy, the effective anisotropy energies are found
as Ca

0 = 3d2(zbK
a
SB − zaK

a
SA) and Ca

sh = 3d2(z2
aK

a
A −

z2
bK

a
B+2zazbK

a
AB). Both energies are curvature-derived

and scale as 1/R2 + . . ..
Optimizing Um = U0

m + δUm for a given γ‖ and small
anisotropy, we find the equilibrium η shear as

η/γ‖ = −(1 + ν)Ca
sh sin 6φ/2Csh. (32)

Eq. (32) indicates that maximum torsion for tubes of the
same radius occurs at the chiral angle φ = π/12, in the
middle between armchair and zigzag tubes, and vanishes
for achiral tubes, in agreement with results of molecular
dynamics simulations.6

We now want to relate the curvature-derived stretch-
induced torsion in (32) to another effect, the chirality
dependence of the stiffness of nanotubes that was dis-
cussed in Refs. 10,17. With the same Um we calculate
anisotropy corrections to the longitudinal stiffness as

∂2Um

∂γ2
‖

= C +
(1− ν2)

2
Ca

0 +
(1 + ν)2

4
Ca

sh cos 6φ, (33)

where C is the contribution coming from U 0
m and dis-

cussed in section II. All C-energies in (33) are R-
dependent. The coefficient Ca

sh in (33) that provides for a
chirality dependence is the same that determines the tor-
sional shear in (32). Eq. (33) predicts a monotonic depen-
dence of the stiffness on the chiral angle between 0 and
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FIG. 7: Element of the type-II BC2N tube structure with 4
atoms in the unit cell. Different circles denote different atoms.
See Ref. 7 for details of the full structure.

π/6, which was indeed found in empirical calculations.17

Comparing (33) to results of Ref. 17, we conclude that
Ca

sh > 0 and is substantial in the sense that its magnitude
is comparable to the overall R-dependence of the longi-
tudinal stiffness. The absolute magnitude of the effect
however may strongly depend on the details of the em-
pirical model used for calculations. Ref. 17 found very
significant variations of the stiffness with the radius of
nanotubes when using the Tersoff inter-atomic potential
and much smaller with the Brenner potential, ab initio
calculations10 also indicate a weak R-dependence of the
stiffness. Molecular dynamics simulations of Ref. 6 yield
∼ 0.05 for the ratio (32) for a very small tube (4,2).
One could expect a much larger stretch-induced tor-

sion effect in the tubes which are elastically anisotropic
already in the unwrapped sheet state. An example of
such may be type-II BC2N tubes, see Fig. 7, where an
anisotropy is expected by virtue of the different inter-
atomic interactions between different types of atoms. We
therefore restrict our attention to η0 term. As is clear
from Fig. 7, the symmetry element left on the parent
sheet is the reflection around the AB axis. Using this as a
general symmetry constraint, one derives the anisotropic
part of the elastic energy as

δUm = Ca
0 γ0(γ cos 2φ1 + η sin 2φ1)

+
Ca

sh

2

[

(γ2 − η2) cos 4φ1 + 2γη sin 4φ1

]

, (34)

where φ1 = φ−π/6 and Ca
0 and C

a
sh are some anisotropy

energies. Optimizing Um now for a given γ‖ and small
anisotropy leads to the following chiral dependence of the
effect:

η/γ‖ = − [(1− ν)Ca
0 sin 2φ1 + (1 + ν)Ca

sh sin 4φ1] /2Csh.
(35)

It follows from (35) that the torsional shear vanishes for
φ = π/6 and φ = 2π/3, that is, along respectively AB
and OB vectors in Figure 7, as one could expect. In
addition, the system may have another couple of such
directions depending on the anisotropy parameters. The
latter determine the sign and magnitude of the torsion.
Some information on elastic properties of BC2N tubes is

available from ab initio calculations18 but not sufficient
for us to make estimates.
Torsion of nanotubes can also be caused by

hydrostatic-like forces that would result in the isotropic
lattice expansion/contraction in the absence of the
anisotropy. One can find equilibrium η for a given γ0 de-
scribing the isotropic effect. With the curvature-derived
anisotropy energy (31) of carbon nanotubes, a finite η
appears only in the second order of the anisotropy pa-
rameters:

η/γ0 = (C
a
0C

a
sh/C

2
sh) sin 6φ,

and, therefore, is expected to be minuscule. In contrast,
the inherent anisotropy energy (34) of BC2N tubes leads
to a finite effect already in the first order:

η/γ0 = −(Ca
0 /Csh) sin 2φ1,

and could be observable.

VII. SUMMARY

We have developed a simple framework for an effec-
tive description of the static lattice deformations for the
hexagonal atomic structure of carbon nanotubes as well
as of the actuation responses related to those deforma-
tions. Nanotubes present a potential to be used for var-
ious (nanoscale) actuators. It would suffice to mention
the quasi-1-d geometry of individual tubes and the high
surface area morphology of their assemblies, which e.g.
leads to large electrochemical charge injection.3 What is
more, the very nature of the responses in nanotubes can
provide unique opportunities.
Shear (anisotropic) deformations play an important

role in nanotubes leading to large and fascinating de-
viations from the parent graphite behavior. It has been
recognized that anisotropic deformations may introduce
a symmetry breaking12 and modulate the gap energy8

in nanotubes. We have shown that charge injection can
conversely result in shear deformations that would signifi-
cantly increase the dimensional changes. Charge-induced
strains exhibit a strong “oscillatory” dependence on nan-
otube geometry (N,M). The differences with isotropic
graphite responses is predicted to be particularly large
for semiconducting tubes at low injection levels. Large
anisotropy of dimensional changes is expected, possibly
leading in some cases to decreasing diameter and increas-
ing length upon charge injection. For the same sign of
carrier injection, some tubes may experience a longitudi-
nal expansion while other a contraction. The same type
of oscillatory dependence is also predicted for the charge-
induced torsional deformations, that is, for the direction
of the resulting twist. Even the electronic band struc-
ture of the nanotubes can reveal itself through sharp
changes of the actuation responses upon changing the
charge injection level. We found that the peculiar oscil-
latory behavior of the semiconducting tubes’ responses
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can be easily understood in terms of the bonding pattern
which changes with N −M .
The best candidates to observe the enhanced dimen-

sional responses would be semiconducting zigzag tubes.
On the other hand, charge-induced torsional deforma-
tions should be best observable in semiconducting chi-
ral nanotubes. However, an oscillatory dependence on
N−M will probably make the observation of the (larger)
effects difficult. For a bundle of nanotubes of various ge-
ometries, experiments are likely to show some average,
with strains from various semiconducting tubes “compen-
sating” each other. Separation of semiconducting nan-
otubes of optimal type is therefore required to make the
predicted enhancement practically useful.
The curvature-induced isotropy breaking of elastic in-

teractions in carbon nanotubes also leads to a specific
coupling of shear deformations and gives rise to another
type of actuation - conversion of the tensile strain into
torsion in chiral tubes. We believe such an actuation can
be even more effectively achieved by using other types
of nanotubes where anisotropy of elastic interactions is
intentionally introduced through substitution of carbon
atoms.

Within our framework, the model outputs depend on
the values of several parameters such as effective elastic
constants and electron-lattice interaction constants, for
which we used some reasonable estimates. We however
feel that a systematic comparison of the outputs to re-
sults of ab initio calculations and experimental data on
graphite and nanotubes may also provide an alternative
access to the microscopic parameters in these systems. It
is remarkable that the symmetry of interactions in nan-
otubes imposes very definite requirements on the chirality
dependence of the effects we discussed. It means that es-
tablishing values of the parameters for armchair and/or
zigzag nanotubes will provide answers for tubes of arbi-
trary chirality.
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